

Berl. Munch. Tierärztl. Wschr. 117,
774–775 (2004)
© 2004 Schäfer-
Verlagsgesellschaft mbH & Co. KG
ISSN 0005-9366

Korrespondierender Autor:
ptasiek@amu.edu.pl

eingegangen: 22.2.2004
angenommen: 20.4.2004

¹Department of Biology & Parasitology, Karol Marcinkowski University of Medical Sciences, Poznań, Poland; ²Department of Avian Biology & Ecology, Adam Mickiewicz University, Poznań, Poland; ³Polish Society for the Protection of Birds, Group of the South Wielkopolska, Ostrów Wielkopolski, Poland;
⁴Zoological Garden in Poznań, Poznań, Poland

Toxoplasma gondii antibodies in the white stork *Ciconia ciconia*

Antikörper gegen *Toxoplasma gondii* beim Weißen Storch (*Ciconia ciconia*)

Izabela Andriejewská¹, Piotr Tryjanowski², Piotr Zdziąłek³, Paweł I. Dolata⁴,
Janusz Ptaszyk¹, Piotr Kuźniak¹

Summary

The prevalence of *Toxoplasma gondii* in chicks of wild birds and captive individuals was studied in the Poznań zoovirons and in the Poznań Zoological Garden in 2002–2003. Blood samples were taken from 143 white stork chicks by an indirect fluorescent antibody test. *T. gondii* antibodies were detected from 5.8 % of 205 analysed white stork chicks and 13.6 % of 44 analysed adult storks in the zoo. Because toxoplasmosis is one of the more common parasitic zoonoses worldwide, we briefly discuss the potential epidemiological importance of stork toxoplasmosis to humans.

Keywords: *Toxoplasma gondii*, Toxoplasmosis, birds, prevalence, *Ciconia ciconia*

Zusammenfassung

Die Prävalenz von *Toxoplasma gondii* wurde in Jungstörchen von Wildvögeln und in gefangenen Individuen in der Umgebung von Posen bzw. im Zoologischen Garten von Posen in den Jahren 2002–2003 getestet. Hierzu wurden die Vögel serologisch mittels indirektem Fluoreszenz-Antikörper-Test auf *T. gondii* geprüft. *T. gondii* Antikörper wurden in 5.8 % von 205 untersuchten Jungstörchen des Weißen Storches sowie bei 13.6 % der 44 getesteten Erwachsenen Störche im Zoo nachgewiesen. Da die Toxoplasmosis eine von weltweit weitverbreitete zoonotische Zoonose ist, wird die potentielle Bedeutung dieser Befunde für den Menschen diskutiert.

Keywords: *Toxoplasma gondii*, Toxoplasmosis, Vögel, Prävalenz, *Ciconia ciconia*

US Copyright Clearance Center
Code Statement:
0005-9366/2004/11707-274 \$15.00/0

Introduction

Toxoplasma gondii infects many species of mammals and birds and is distributed world-wide (for a review see Dubey, 2002). In an agricultural landscape occurrence of this protozoan parasite can be important, both for people as well as for animals. *Toxoplasma gondii* affects bird behaviour and can even influence population dynamics (Dubey, 2002; Tenter et al., 2000).

The aim of present study was to determine the prevalence of *T. gondii* in two groups of the white stork *Ciconia ciconia*: chicks and flying individuals delivered to a rehabilitation centre. Moreover, we tried to find any potential impact of *T. gondii* antibodies present on body condition of chicks.

Material and methods

Field procedures and animals. Field work was conducted during two breeding seasons (2002 and 2003) in two different part of Wielkopolska region, which holds typical breeding densities of white storks in Poland, ca 17 breeding pairs/100 km²; near Ostrów Wlkp. (Dolata, 2003), and ca 5 bp/100 km² near Poznań (Ptaszyk, 1991 any Ptaszyk, unpubl. data).

The age of chicks was estimated using bill length measurements. We measured the upper mandible of the bill (tip to feathers) of all nestlings to the nearest 0.1 mm using slide callipers. The age of each nestling was estimated according to table of bill development (Kania, 1988). Chicks were bled from the brachial vein, and

We did not find any negative effects of *T. gondii* on the condition of chicks either on the flying white storks.

Rzodkiewicz & Boś (1980) suggested that wild birds are a valid vector in the distribution of *T. gondii* and the source of toxoplasmosis for humans may be edible poultry products and wild game-birds. The white stork is not hunted for food in Europe but the opposite is the case in Africa (Schulz 1998).

Acknowledgements: We are grateful to A. Rynda, M. Prange, J. Kosicki and S. Kuźniak for their technical and laboratory co-operation, and I. Literák and two anonymous referees for valuable comments. These studies were carried out in agreement with state ethical standards and were funded by grants PU-II/17 and PU-II/2, and partially by Local Government Agency Ostrów Wielkopolski and PTIP "pro Natura".

References

Antczak, M., S. Konwerski, S. Grobelny, P. Tryjanowski (2002): The food composition of immature and non-breeding White Storks in Poland. *Waterbirds* 25, 424–428.
Dolata, P.T. (2003): Studies and conservation of White Stork *Ciconia ciconia* in Wielkopolska part of "Barrys Valley" Landscape Park in years 2000–2002. *Biul. Parków Krajoznaw. Wielkopolski* 9, 165–174.
Dubey, J.P. (2002): A review of toxoplasmosis in wild birds. *Vet. Parasit.* 108, 121–153.
Hejliček, K., I. Literák, J. Nezval (1997): Toxoplasmosis in wild animals from the Czech Republic. *J. Wildl. Dis.* 33, 480–485.
Kania, W. (1988): Investigations of White Stork (*Ciconia ciconia*) hatching phenology based on bill measurements of nestlings. *Ring* 134–135, 13–19.
Lin, D.-S., W.-L. Su (1997): Comparison of four diagnostic techniques for detecting *Toxoplasma gondii* infection in cats, dogs and humans. *Acta Zool. Taiwan.* 8, 3–13.
Ptaszyk, J. (1994): Population of the White Stork *Ciconia ciconia* in the former district of Poznań in 1983–1992. *Pr. Zool. Biol. Ekol. Państw. UAM* 3, 91–118.
Rzedzicki, J., M. Boś (1999): Birds as a potential source of human infection by *Toxoplasma gondii*. *Med. weteryn.* 55, 351–355.
Schulz, H. (1998): *Ciconia ciconia*. White Stork. *BWP Update* 2, 69–105.
Sediák, K., I. Literák, I. Pavlásek, J. Benák (2000): Susceptibility of common voles to experimental toxoplasmosis. *J. Wildl. Dis.* 37, 640–642.
Tenter, A. M., A. R. Heckeroth, L. M. Weiss (2000): *Toxoplasma gondii*: from animals to humans. *Intern. J. Parasitol.* 30, 1217–1228.
Tryjanowski, P., Kuźniak, S. (2002): Size and productivity of the White Stork *Ciconia ciconia* population in relation to Common Vole *Microtus arvalis* density. *Ardea* 90, 213–217.
Valkinink, G., C. V. Bolshakov, N. Chernetskov, V. Kosarev (2002): Lack of haematozoa in the White Stork *Ciconia ciconia* in the Kaliningrad Region of Russia. *Avian Fert. Behav.* 9, 63–66.

Corresponding author:

Piotr Tryjanowski, Department of Avian Biology & Ecology, Adam Mickiewicz University, 60-766 Poznań, Poland.
E-Mail: ptasiek@amu.edu.pl